Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent

نویسندگان

  • Ahmad Bagheri 1. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111 Iran 2. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111 Iran
  • Hossein Beydaghi 1. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111 Iran 2. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111 Iran
  • Hossein Ghafarian-Zahmatkesh 1. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111 Iran 2. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111 Iran
  • Khadijeh Hooshyari 1. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111 Iran 2. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111 Iran
  • Mehran Javanbakht 1. Department of Chemistry, Amirkabir University of Technology, Tehran, 1599637111 Iran 2. Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, 1599637111 Iran
چکیده مقاله:

In this study, the activity, stability and performance of carbon supported platinum (Pt/C) electrocatalyst in cathode and carbon supported Pt and ruthenium (PtRu/C) electrocatalyst in anode of direct methanol fuel cell (DMFC) were studied. The Pt/C and PtRu/C electrocatalysts were prepared by impregnation reduction method. The β-D-glucose was used as protection agent to reduce the particle size and improve performance of prepared electrocatalysts. The prepared electrocatalysts were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The results of XRD and TEM showed that the average particle size of metals in prepared electrocatalysts is between 2-3 nm. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry were used to investigate electrooxidation of methanol and electrocatalytic activity of prepared electrocatalysts. The results showed that PtRu/C electrocatalyst has better activity in methanol condition due to its smaller average particle size of nanoparticles, superior activity for methanol oxidation and its higher carbon monoxide (CO) tolerance. The single DMFC cell consisted of protected electrocatalysts exhibited a 28 % increase in the peak power density in room temperature, with the maximum peak power density of 22.13 mW cm-2. 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt/graphene-CNTs electrocatalyst for direct methanol fuel cell

In the present work we report a facile method for the synthesis of Pt nanoparticles supported reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) nanocomposite by an in-situ chemical reduction. The incorporation of MWCNTs to rGO leads to decrease in agglomeration between rGO sheets due to π – π interactions and higher loading of Pt nanoparticles. In this process, a mixture o...

متن کامل

development of different optical methods for determination of glucose using cadmium telluride quantum dots and silver nanoparticles

a simple, rapid and low-cost scanner spectroscopy method for the glucose determination by utilizing glucose oxidase and cdte/tga quantum dots as chromoionophore has been described. the detection was based on the combination of the glucose enzymatic reaction and the quenching effect of h2o2 on the cdte quantum dots (qds) photoluminescence.in this study glucose was determined by utilizing glucose...

Functionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review

Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...

متن کامل

A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  1- 11

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023